Course Outcomes : Chemistry

Place of teaching the Course	Katwa College
Department	Chemistry
Name of the Course	Core Course 1 (under CBCS)
Semester	1 st
Course Title	Organic Chemistry-I (Theo): Basics of Organic Chemistry
Main Topics of the Course	1. Bonding and Physical Properties
	2. General Treatment of Reaction Mechanism I
	3. Stereochemistry-I
Mentors	Dr. Saptarshi Biswas, Prof. Siddhartha Maji

Upon completion of these topics, students should be able to

- **CO 1** Classify and identify different types of organic reactions.
- **CO 2** Gain concepts about hybridization, resonance and hyperconjugation.
- **CO 3** Calculate formal charges and degree of unsaturation (DBE or IHD) in organic compounds.
- **CO 4** Draw orbital diagram of different types of bonding in organic compounds.
- **CO 5** Get knowledge about various electronic displacement phenomena *e.g.* inductive effect, field effect, mesomeric effect, electromeric effect, steric effect, steric inhibition of resonance (SIR).
- **CO 6** Understand the concept of aromaticity and Hückel's rules.
- **CO** 7 Differentiate among aromatic, anti-aromatic, non-aromatic and homoaromatic organic compounds.
- **CO 8** Get elementary idea about σ , σ^* , π , π^* , n Mos and Frontier MOs (FMO).
- **CO 9** Sketch π MOs of conjugated diene, triene, allyl and pentadienyl systems.
- **CO 10** Identify HOMO, LUMO and SOMO in ground state & excited state and interactions between HOMO and LUMO.
- **CO 11** Draw Frost diagram of cyclic aromatic compounds.
- **CO 12** Get elementary idea about α and β and calculate delocalization energies in terms of β .

- **CO 13** Get idea about bond dissociation energy (BDE), bond energy, concept of bond angle strain (Baeyer's strain theory) in small ring systems.
- **CO 14** Conceptualize melting point/boiling point and solubility of common organic compounds in terms of covalent & non-covalent intermolecular and intramolecular forces.
- **CO 15** Explain relative stabilities of isomeric hydrocarbons in terms of heat of hydrogenation, heat of combustion and heat of formation.
- **CO 16** Identify mechanistically ionic, radical and pericyclic reactions.
- CO 17 Draw curly arrow symbol in representation of mechanistic steps of organic reactions.
- **CO 18** Get idea about organic reactive intermediates *e.g.* carbocations (carbenium and carbonium ions), carbanions, carbon radicals, carbenes, nitrenes and benzynes.
- **CO 19** Write down different procedures for the generation of the above mentioned reactive intermediates and rationalize their stability & electrophilic/nucleophilic behavior.
- **CO 20** Exemplify different organic reactions involving various reactive intermediates.
- **CO 21** Represent the molecules in different projection formulae (e.g. Fischer, sawhorse, flying-wedge and Newman).
- **CO 22** Exemplify the chirality, symmetry elements and point groups.
- **CO 23** Illustrate the asymmetric and dissymmetric molecules; enantiomers and diastereomers.
- **CO 24** Describe relative and absolute configuration: D/L, E/Z and R/S descriptors; erythro/threo; syn/anti nomenclatures.
- **CO 25** Describe optical rotation, specific rotation and molar rotation.
- **CO 26** Elucidate racemic compounds, racemisation and resolution of acids, bases and alcohols *via* diastereomeric salt formation.
- **CO 27** Epitomize optical purity and enantiomeric excess.
- **CO 27** Recognize the natural amino acids and nucleosides are enantiomerically pure as these are the basis of all life *via* DNA and/or RNA.

CO 28 Understand the high price of single enantiomeric drugs.

Place of the Course	Katwa College
Department	Chemistry
Name of the Course	Core Course 2 (under CBCS)
Semester	1 st
Course Title	Physical Chemistry-I (Theo)
Main Topics of the Course	1. Kinetic Theory & Gaseous State
	2. Chemical Thermodynamics
	3. Chemical Kinetics
Mentors	Dr. Kedar Nath Mitra, Dr. Goutam Nandi, Dr. Dinesh Maity

Upon completion of the course students will be able to

KINETIC THEORY AND GASEOUS STATE

- CO 1 Explain the concept of pressure and temperature from Kinetic Theory of gases.
- **CO 2** State the postulates of kinetic theory of gas.
- **CO 3** Write and derive equations of states for an ideal gas and a real gas.
- **CO 4** Describe physical basis for the kinetic theory of gases.
- **CO 5** Derive gas laws from kinetic theory.
- **CO 6** State the assumptions for Maxwell's law of distribution of molecular speed.
- CO 7 Explain the relationship between partial pressures and the total pressure as described in Dalton's law of Partial Pressure.
- **CO 8** Define and derive different kinds of speed of gases.
- **CO 9** Describe transport properties of gas.
- **CO 10** Establish Boltzmann distribution law from Maxwell's distribution law.

THERMODYNAMICS

- **CO 1** Explain with suitable examples that laws of thermodynamics are based on the experiences gathered from natural phenomena.
- CO 2 Justify the necessity of the knowledge of calculus in dealing with the laws of thermodynamics and their application.
- **CO 3** Exemplify the idea of system, surrounding and boundary.
- **CO 4** Mention salient features of different thermodynamic processes.

- CO 5 Classify different properties as extensive and intensive; also make a correlation among the two.
- CO 6. Explain that a thermodynamic function is called a state function only if it is a perfect differential.
- **CO 7** Write a brief review on internal energy.
- CO 8 Explain why dq and dw are not state function but their sum is a state function.
- **CO 9** Interpret 1st law of thermodynamics while applying to different processes.
- **CO 10** State the outcomes of Joule's experiment.
- **CO 11** Derive expression for work involved with different processes.
- **CO 12** Criticise: It is more convenient to use change in enthalpy with compare to the change in internal energy.
- CO 13 Mention the importance of considering FRICTIONLESS WEIGHTLESS
 PISTON and THERMOSTAT.
- CO 14 State the difference between SINGLE /FINITE STEP process and QUASI STATIC/INFINITE STEP process.
- **CO 15** Derive expression of work involved with different thermodynamic processes for ideal and real gases.
- **CO 16** Compare between work involved with different thermodynamic processes.
- **CO 17** Represent the concept of SPECIFIC HEAT and explain how these have been used in thermodynamic derivations.
- CO 18 State the reason for the change in enthalpy during chemical reactions and physical processes.
- CO 19 Define with examples various types of enthalpy change associated with chemical reactions and physical changes. Also comment on their temperature dependence.
- **CO 20** Justify the necessity of the 2^{nd} law of thermodynamics.
- **CO 21** Explain the concept of engine.
- **CO 22** Understand the conclusions drawn from Carnot Cycle.
- **CO 23** Prove Carnot theorems.

- CO 24 Grasp the idea of refrigeration and differentiate between the functioning of a refrigerator and a heat pump.
- **CO 25** Differentiate between reversible and irreversible engines.
- **CO 26** Apply the idea of Clausius inequality in explaining different thermodynamic phenomena.

CHEMICAL KINETICS

- Upon completion of this topic, students should be able to:
- **List reasons for studying chemical kinetics.**
- Jiscuss the factors that affect the rate of chemical reactions.
- **4** Differentiate between order and molecularity of a chemical reaction.
- Describe the general form of a (differential) rate law and how the rate of a chemical reaction depends on the concentrations of species that appear in the rate law.
- Determine the "overall reaction order" for a chemical reaction using the (differential) rate law.
- Derive a general expression for the unit of rate constant and to find the unit of rate constant for zero, 1st, 2nd and 3rd order reaction.
- State the basis for the "Collision Model" and "Transition State Model" of Chemical Kinetics.
- Explain why reactant molecules must have a certain minimum amount of kinetic energy when they collide in order for a chemical reaction to occur.
- **4** Describe "activation energy" and how it can be experimentally determined.
- Define a catalyst and describe the effect of a catalyst on the energy requirements for a reaction.
- Sketch a potential energy profile showing the activation energies for the forward and reverse reactions and show how they are affected by the addition of a catalyst.
- Exemplify "kinetically controlled and thermodynamically controlled" product.
- Explain how enzymes act as biological catalysts and how they interact with specific substrate molecules.

Course Outcomes : Chemistry

Place of the Course	Katwa College
Department	Chemistry
Name of the Course	Core Course 3 (For Honours Students)
Main Topics of the Course	1. Extra Nuclear Structure of Atom
	2. Chemical Periodicity
	3. Acid-Base Reactions
	4. Redox Reactions and Precipitation Reactions
Mentors	Dr. Kedar Nath Mitra, Dr. Goutam Nandi, Dr.
	Dinesh Maity

Extra Nuclear Structure of Atom

Upon completion of this topic, students should be able to:

- **4** Outline the historical developments of atomic theory.
- **Write the postulates of different atomic theory.**
- **4** Derive the Rydberg equation using Bohr's atomic model.
- **4** Determine the wavelength and frequency of radiation of emission spectrum.
- ➡ Write Heisenberg's uncertainty principle and its significance.
- **4** Write Scrodinger's wave equation and significance of Ψ and Ψ^2 .
- 4 Describe four quantum numbers and their significance.
- ↓ Draw s, p, d and f orbitals.
- Write Pauli's exclusion principle, Hund's rules of maximum multiplicity, Aufbau principle.
- **Write the electronic configuration of atoms.**
- Derive the term symbols of atoms.

ACID-BASE

After completion of the course the student will be able to -

- CO 1 Write down auto-ionization equilibrium of liquid sulfur dioxide, liquid ammonia and liquid hydrogen fluoride. Also discuss the neutralization reactions occur in these solvents.
- **CO 2** Define acid and base as enumerated in different concepts on acid-base.
- **CO 3** State the merits and demerits of different concepts on acid-base.
- **CO 4** Exemplify the following terms: amphi-protic solvent, conjugate acid-base pair, differentiating and leveling solvents, co-solvating agent.
- CO 5 Justify the statement, "conjugate base of a weak acid is strong and vice versa".
- CO 6 Classify the following as acid, base and neutral species according to electronic theory of acid-base: N₂, BCl₃, NH₄⁺, SO₂, DMF, DMSO, RCN
- **CO 7** Explain the utility of acidity function. State its relation with pH of dilute solution.
- **CO 8** Write the equation taking care of the ionic and covalent contribution in relation to the acid-base interaction. State the significance of the equation.
- CO 9 Enumerate the rules used to predict the successive pK_a values and thus the acid strength of the oxy-acids. Give examples how these rules could be used to predict the structure of oxy-acids.
- **CO 10** Comment on the statement, "Steric factors and dative Π-bond formation have significant influence on acid-base behavior of certain species".
- **CO 11** Correlate the hard and soft nature of donor and acceptor atoms with their polarizing power and polarizability.
- **CO 12** Explain the SHAB principle in the light of FMO diagram.
- **CO 13** Describe briefly the periodic variation of acid-base behavior with plausible explanation.
- **CO 14** Explain with suitable examples: hardness of transition metal ions vary with oxidation state.
- CO 15 Arrange the order of acidity of the acids with composition (a) HXO_n (X = halogen other than 'F', n = 1. 2. 3. 4), (b)H₃YO_n(Y=P, n = 2, 3, 4), (c) HX (X = F, Cl, Br, I)
- CO 16 Clarify the statement with suitable examples, "Acidity of aqua ions are function of their charge and radius".
- CO 17 Explain with the help of suitable concept on acid-base, the distribution of different elements in the nature.
- CO 18 State how catalytic behavior of certain could be related with the Lewis and Brönsted acid nature of certain oxides.

REDOX AND PRECIPITATION REACTIONS

- CO 1 Describe briefly the electronic theory of oxidation and reduction with suitable examples.
- **CO 2** State the difference between electrolytic cell and galvanic cell.
- **CO 3** Define the terms: Positive electrode, Negative electrode, Standard potential, and Formal potential.
- **CO 4** Narrate a brief account on salt bridge.
- CO 5 Construct the galvanic cell and write electrode reactions, from there derive the cell reaction and determine the value of cell emf, and equilibrium constant from given standard electrode potential values.
- **CO 6** Derive the Nernst equation for any galvanic cell.
- **CO 7** Show how concentration affects the direction of reaction in a galvanic cell.
- **CO 8** Explain the effect of change of pH, precipitation and complex formation on formal potential of different redox couples using appropriate examples.
- **CO 9** Follow the course of a redox titration and to calculate the potential values at different stages of the titration.
- CO 10 Justify the role of a redox indicator and the use of phosphoric acid in the titration of ferrous iron by potassium permanganate and potassium dichromate.
- CO 11 Enumerate different information that is got from Latimer and Frost diagrams.
- CO 12 Comment on the possibility of comproportionation and disproportionation reactions.
- CO 13 Understand the terms, solubility product, common ion effect, lattice energy and solvation energy and their relation with the solubility of different compounds.
- **CO 14** Clarify the possibility and condition of precipitation.
- **CO 15** Explain the steps of group analysis in relation to inorganic qualitative analysis.

Place of teaching the Course	Katwa College
Department	Chemistry
Name of the Course	Core Course 4 (under CBCS)
Semester	2 nd
Course Title	Organic Chemistry-II (Theo)
Main Topics of the Course	1. Stereochemistry-II
	2. General Treatment of Reaction Mechanism II
	3. Substitution and Elimination Reactions
Mentors	Dr. Saptarshi Biswas, Prof. Siddhartha Maji

Upon completion of these topics, students should be able to

- **CO 1** Get knowledge about various thermodynamic parameters e.g. equilibrium, free energy, enthalpy and entropy factor of a chemical reaction.
- **CO 2** Calculate enthalpy change of a chemical reaction *via* bond dissociation energy (BDE).
- **CO 3** Apply the involvement of the thermodynamic parameters in case of intermolecular & intramolecular reactions.
- **CO 4** Concept of organic acids and bases.
- **CO 5** Understand the effect of structure, substituent and solvent on acidity and basicity of organic molecules.
- **CO 6** Compare between gas-phase and solution phase acidity and basicity of organic molecules.
- **CO** 7 Compare between nucleophilicity and basicity.
- **CO 8** Apply HSAB principle in various chemical reactions.
- **CO 9** Explain thermodynamic principles in acid-base equilibria.
- **CO 10** Illustrate different types of tautomerism including prototropy, anionotropy, ring-chain tautomerism and valence tautomerism.
- **CO 11** Prove the presence of both keto and enol forms in solution.
- **CO 12** Apply thermodynamic principles in tautomeric equilibria.

- CO 13 Get idea about various parameters in reaction kinetics representation of rate law of a chemical reaction, rate constant, free energy of activation, order and molecularity of a reaction.
- **CO 14** Draw free energy profile diagrams for one-step, two-step and three-step chemical reactions.
- **CO 15** Draw energy profile diagrams for a catalyzed and uncatalyzed reaction and explain the role of a catalyst in a chemical reaction.
- **CO 16** Explain electrophilic and nucleophilic catalysis with proper examples.
- **CO 17** Make out kinetic control and thermodynamic control of reactions.
- **CO 18** Elaborate both primary and secondary kinetic isotopic effect with evidences.
- **CO 19** Describe principle of microscopic reversibility.
- **CO 20** Carry out halogenation of alkanes *via* free radical mechanism.
- **CO 21** Explain the formation of one regioisomer over the other in the light of Hammond's postulate.
- **CO 22** Learn nucleophilic substitution reactions at sp^3 centre with mechanism.
- **CO 23** Explain the effects of solvent, substrate structure, leaving group and nucleophiles on substitution reactions.
- **CO 24** Explain the involvement of NGP in the treatment of cancer.
- **CO 25** Describe the role of crown ethers and phase transfer catalysts in nucleophilic substitution reactions.
- **CO 26** Perform synthesis of alkenes and alkynes involving different kinds of elimination reaction with mechanism.
- **CO 27** Explain the conditions leading to the formation of Saytzeff & Hofmann elimination products.
- **CO 28** Compare between substitution and elimination reactions.
- **CO 29** Represent the chirality arising out of stereoaxis.
- **CO 30** Exemplify the atropisomerism, buttressing effect and prostereoisomerism.

- **CO 31** Illustrate the concept of (pro) n-chirality: topicity of ligands and faces.
- **CO 32** Represent the pro-R/pro-S, pro-E/pro-Z and Re/Si descriptors; pro-r and pro-s descriptors of ligands.
- **CO 33** Describe conformational nomenclature.
- **CO 34** Elucidate eclipsed, staggered, gauche, syn and anti; dihedral angle, torsion angle; Klyne-Prelog terminology; P/M descriptors.
- **CO 35** Determine the conformation of conjugated systems (s-cis and s-trans)
- **CO 36** Describe gauche-butane interaction.
- **CO 37** Epitomize pro-r and pro-s descriptors of ligands on propseudoasymmetric centre.

Course Outcomes : Chemistry

Place of teaching the Course	Katwa College
Department	Chemistry
Name of the Course	Core Course 7 (under CBCS)
Semester	3 rd
Course Title	Organic Chemistry-III (Theo)
Main Topics of the Course	1. Chemistry of alkenes and alkynes
	2. Aromatic Substitution
	3. Carbonyl and Related Compounds
	4. Organometallics
Mentor	Prof. Siddhartha Maji

Upon completion of these topics, students should be able to

- **CO 1** Learn different types of regioselective and stereoselective electrophilic addition to C=C bonds with plausible mechanisms such as halogenations, iodolactonisation, hydrohalogenation etc.
- **CO 2** Gain concepts about different types of hydration pathways to C=C bonds including acid-catalyzed hydration, oxymercuration-demercuration, hydroboration-oxidation.
- **CO 3** Form small-membered rings such as cyclopropanes & epoxides *via* electrophilic addition to C=C bonds and opening of the corresponding rings using suitable electrophiles and nucleophiles.
- **CO 4** Learn practical applications of epoxide ring formation and its re-opening in our daily life.
- **CO 5** Get knowledge about tunability of reagents between bromination across C=C bonds and allylic bromination reactions.
- **CO 6** Learn about 1, 3-diploar addition across C=C bonds initiated by 1, 3-dipolar molecules such as ozone, nitrile oxide etc.
- **CO** 7 Assign reagents/conditions for syn and anti-hydroxylation of C=C bonds.
- **CO 8** Get idea about interconversion of E and Z-alkenes.
- **CO 9** Compare different types of regioselective & stereoselective electrophilic addition to C=C bonds and hydration reactions with that of C=C bonds.

- **CO 10** Acquire information about dissolving metal reduction methods of benzenoid aromatics as well as C=C bonds.
- **CO 11** Learn about 1, 3-diploar addition across C=C bonds initiated by 1, 3-diploar molecules such as ozone, nitrile oxide and etc.
- **CO 12** Get elementary idea about 'click reactions' and its practical applications.
- **CO 13** Get idea about interconversion of terminal and internal alkynes.
- CO 14 Be conceptualize with different types of electrophilic aromatic substitution reactions with evidences in favour of the proposed mechanisms such as nitration, nitrosation, sulfonation, halogenation, Friedel-Crafts reaction, chloromethylation, Gatterman-Koch, Gatterman, Houben-Hoesch, Vilsmeier-Haack, Reimer-Tiemann, Kolbe-Schmidt reactions.
- **CO 15** Get idea about nucleophilic aromatic substitution reactions along with evidences in favour of addition-elimination and elimination-addition mechanisms.
- **CO 16** Learn about ipso and cine-substitution.
- **CO 17** Learn about mechanism for nucleophilic addition to C=O bonds and understanding the mechanistic approach in terms of Burgi-Dunitz trajectory and molecular orbital theory (MOT).
- **CO 18** Get information about applications of formation of hydrates, cyanohydrins and bisulphite adduct.
- CO 19 Convert carbonyl group into other functionalities including benzoin condensation, Cannizzaro, Tischenko reaction, Wittig reaction and reduction & oxidation reaction of carbonyl compounds such as Clemmensen reduction, Wolff-Kishner reduction, LiAlH4, NaBH4, MPV reduction, Oppenauer oxidation, Bouveault-Blanc reduction, acyloin condensation etc.
- **CO 20** Form carbonyl functionality *via* the oxidation of alcohols with PCC & PDC and oxidation of 1, 2-diols with periodic acid & lead tetraacetate.
- CO 21 Exploit the acidity of α-H of C=O to form carbon-carbon bonds using aldol condensation, Robinson annulation, benzoin condensation, Mannich reaction, Perkin reaction, Michael addition, Stork-enamine synthesis, Claisen-Schmidt condensation, Favorskii rearrangement etc.
- **CO 22** Exploit the acidity of α -H of ester functionality in the formation of carboncarbon bonds utilizing Claisen ester condensation, Dieckmann cyclisation, acyloin condensation, Darzens glycidic ester condensation etc.

- **CO 23** Be familiar with compounds containing active methylene group *e.g.* diethyl malonate, ethyl acetoacetate, ethyl cyanoacetate & acetylacetone and their utility in organic synthesis exploiting Stobbe condensation, Knoevenagel condensation and Doebner modification.
- **CO 24** Synthesize α -oxidation products of carbonyl compounds (*e.g.* α -bromination, Riley oxidation) and carboxylic acids (*e.g.* HVZ reaction).
- **CO 25** Gain idea about 'acyl-cation' and 'acyl-anion' synthons and their corresponding synthetic equivalents.
- **CO 26** Get familiar with disproportionation reaction of carbonyl compounds (*e.g.* Cannizzaro reaction) and reactions of aldehydes with Tollens' reagent and Fehling's solution.
- **CO 27** Use α, β-unsaturated carbonyl compounds as dienophiles in Diels-Alder reaction.
- **CO 28** Recognize the products leading to the formation of KCP & TCP in the formation of enolates and electrophilic addition to conjugated dienes.
- **CO 29** Get elementary concept about various types of mechanisms for hydrolysis of esters such as $B_{AC}2$, $A_{AC}2$, $A_{AC}1$, $A_{AL}1$ etc.
- **CO 30** Get familiar with the concept of 'umpolung' and its application in the formation of various organometallic reagents e.g. Grignard reagent, organolithiums, organocuprates and organozinc reagents.
- **CO 31** Exploit the enhanced nucleophilicity of Grignard reagents and alkyl/aryl lithiums in the formation of carbon-carbon bonds.
- **CO 32** Utilize the moderate nucleophilicity of Gilman cuprates in the formation of carbon-carbon bonds such as Corey-House synthesis, reaction with aldehyde and acid chlorides.
- **CO 33** Utilize the electrophilic behaviour of zinc-carbenoids to form highly strained cyclopropane molecules.
- **CO 34** Get familiar with the abnormal behaviour of Grignard reagents and the concept of base-nucleophile dichotomy in case of organometallic reagents.

Place of the Course	Katwa College
Department	Chemistry
Name of the Course	Core Course 6 (For Honours Students)
Main Topics of the Course	1. Chemical Bonding-I
	 Chemical Bonding-II Radioactivity
Mentors	Dr. Kedar Nath Mitra, Dr. Goutam Nandi, Dr. Dinesh
	Maity, Dr. Saptarshi Biswas

Ionic Bond

Upon completion of this topic, students should be able to:

- **CO 1** Outline the general characteristics of ionic bonds.
- **CO 2** Describe the radius ratio rule and its applications.
- **CO 3** Find out the geometry of the cation and anion in an ionic crystal using radius ratio rule.
- **CO 4** Describe the packing (hcp or ccp) of ions in crystal.
- **CO 5** Calculate the packing efficiency of different types of packing.
- **CO 6** Derive the Born-Lande equation for determining the lattice energy of the ionic compounds.
- **CO** 7 Draw the Born-Haber cycle and determine the thermodynamic parameters for different ionic compounds.
- **CO 8** Define the salvation energy and its application in dissolution process.

Radioactivity

On completion of the course, students are able to:

- **CO 1** Describe Nuclear forces and nuclear binding energy.
- **CO 2** Distinguish between the different types of nuclear model.
- **CO 3** Elucidate the nuclear reactions: Artificial radioactivity, transmutation of elements, fission, fusion and spallation.
- **CO 4** know how to determine of age of rocks and minerals, radio carbon dating.

CO 5 understood and realize the radiation hazard and radiation safety.

Place of the Course	Katwa College
Department	Chemistry
Name of the Course	Core Course 5 (under CBCS)
Semester	3 rd
Course Title	Physical Chemistry-II (Theo)
Main Topics of the Course	1. Transport Processes
	2. Application of Thermodynamics – I
	3. Foundation of Quantum Mechanics
Mentors	Dr. Kedar Nath Mitra, Dr. Goutam Nandi, Dr. Dinesh Maity,
	Dr. Saptarshi Biswas

Transport Processes

On completion of the course, students are able to:

- CO 1 Describe different transport properties, Fick's law and phenomenological coefficients.
- **CO 2** Distinguish between the different types of fluid flow.
- **CO 3** Able to establish Newton's equation, viscosity coefficient; Poiseuille's equation.
- **CO 4** Recognize cell constant, specific conductance, molar conductance; specific conductance, equivalent conductance.
- **CO 5** Illustrate the Ostwald's dilution law; Ionic mobility and conductance measurement.
- **CO 6** Determine the solubility product and ionic product of water.
- **CO** 7 Elucidate the principles of Hittorf's and Moving-boundary method.
- **CO 8** Describe Wien effect, Debye-Falkenhagen effect and Walden's rule.